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Introduction: monitoring methods
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Introduction: SENSE consortium
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SENSE project concept

Satellite for monitoring ground
motion onshore

http://www.pnasAolrg/:ontentlll1/24/8747/t!b-ﬁgu De monstrat | on Of conce pt
: onshore

Demonstration offshore

- Estimation of ground deformation
(via modelling)

- Measure ground deformation
(satellite for onshore-pressure
sensors/fiber optics for offshore)

- Analyse measured vs estimated deformation:
e agreement with estimations 2 OK
e anomaly = Alert on performance/integrity issues

.

NCII Geomechanical modelling, inversion- history matching > ==
subsurface management & containment assurance



SENSE objective

7 Ground motion measurement for continuous, cost efficient CO, storage
monitoring over large areas:

>
>
>

Demonstrate tools & methods in field cases (onshore, offshore)
Optimization of sampling configuration for monitoring ground surface/seafloor

Models & inversion to provide information on pressure distribution and hydraulic behavior of

subsurface

Improvement of geomechanical constraints for storage performance and integrity

N

e Safe storage of CO2 in long-term

(Early warning in case of unexpected events)



INSAR, GPS
Geodesy
Bathymetry

Fiber optic

)

Project Structure

petectable movement, g

WP1:

Quantification of
ground movement

Onshore/offshore
sites

WP2:
Geomechanics of
storage complex

& rock strain

}

WP3:
Integrated inversion-
history matching

Cost-effective

monitoring

WP5: Project management and scientific co-ordination
Site coordination, smooth flow of data, partners engagement, delivery of results




3. Hatfield Moors, natural gas storage, sandstone,

WP1: Measurement of ground deformation-
case studies

1. In Salah/Troll Subsidence data
2. Boknis Eck, Offshore Germany

3. Hatfield Moors, onshore US S_cotti‘sh power: opera
4. Gulf of Mexico '

BGS: install reflec./acqu

High Island

—
50 km




InSalah: Injection vs. Post-Injection Phase

Injection: 2004 — 2010 (ENVISAT) Post-Injection: 2010 — 2016 (TerraSAR-X)
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Presenter
Presentation Notes
Metoden kalles for radar interferometri, gjerne forkortet til InSAR

Goal of InSAR: make use of the phase differences between two or more acquisitions in order to derive rate of ground deformation

“InSAR is like surveying, but for tens of thousands of data points, measured every 11 days, across an entire city”



CONCEPTUAL MODELING- IMPACT OF FAULT
PERMEABILITY ON GROUND DEFORMATION

@ Reservoir at a 1600 m depth, 50 m thick

@2800 t/d injection, 160 bar/40°C Storage Fm
conditions, injection controlled by a 50 [ —]
bar overpressure

@ Injection well: 6 km from anticline Faults (core and damage zones ) with throw
summit

50 ky

@ Injection constrained by a max.
overpressure [50 bar], max. inj. rate of
2800 t/d (surface)

50“0

@ Depth, thickness of storage formation
and overburden are scenario-dependent.

Anticline trap

Anticline trap with sealing or draining faults
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Presentation Notes
2 main faults + 1 subseismic fault (about 1km from the well)


Impact of fault permeability of ground uplift

Anticline trap with sealing or draining faults

Pressure difference
Sealing — Draining Faults scenarii [bar]

Draining fault
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Can we measure mm-scale ground deformation?
Fiber optics (Distributed Strain Sensing- DSS)

Optical Pulse Interrogator
I

o Back FERR
g vibration - gcattered light fa FREEEL
deformatlon s . |

heat

Baseline NG|

e
2 -

_ Data points every 1mm to meters Seabed Up“ft

Strain, Temperature
Resolution — <1pue, 0.1 °C

The magnitude of tension (axial strain) along the DSS cable depends
NG on the radial deformation, slope gradient and soil-cable friction



Controlled tests 1n a sandbox

7 Investigate the DSS cable sensitivity to heave deformations

7 Investigate the effect of soilcable interaction (friction) and pre-tensioning

* Investigate the effect of micro anchors
* Investigate the effect of overburden
7 How to convert and quantify the measured axial strain to radial (vertical) deformations?

Anchors C-C 800

Flexible plate 2000x600mm

__ Circular anchors

Square anchors
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700

Flexible plate
2m long

NG|

Plane view of 10.5m long sandbox with embedded DSS cable and 3 lifting points

Air
lift bag

Airbag

Airbag

=

~20-40cm sand

10cm sand

Airbag




Controlled tests In sandbox - NGl

Test arrangement
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Controlled tests 1n sandbox

Example of results — small deformations - without micro anchors
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DSS Cable test at Boknis Ec SENSE ceomn’ ) NG B2




DSS Cable test at Boknis Eck SENSE com NG| B2

The nearshore tests were less controlled, similar ground deformation sensitivity as in NGI’s sandbox was demonstrated
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: Subsidence 2017-2012 -3 -
Troll Field o TemiPE——

observed subsidence 2017-2012 Reservaoir thickness

@ Fositive values
@ Hegats values ® unmm . 43mm . 88 mm 86 mm
o Reference stations
37
00

SENSE consortium meeting November 29" 2021




Case Study: Gulf of Mexico-Lawrence Livermore National Lab

Storage Capacity

Estimates, Texas Gulf

Coast [Gulf-Coast Carbon
Atlas]

LLE

Lawrence Livermore
National Laboratory
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GoM model

Overburden

Injection well
. Shale 1 | )
B sandstone | Observation wells

. Shale 2
. Underburden

| Existing wells

~1.9km

n HHI’IJMI” 1{, Il

~2.5km

Ul Lawrence Livermore
National Laboratory



Seabed uplift

Reservoir excess pressure

seabed displacement

&

Pressure (Pa) .Z & Total Displacement Z (m)
.7— N4 -1.0e+03 2.0e+5 4.0e+5 6.0e+5 8.0e45 1.0e+06 2.0e-03 0.004 0.006 0.008 0.0 1.2e-02

|l Lawrence Livermore
—d National Laboratory

[Julia Camargo et al., in prep]



Predict monitoring observations

Maximum uplift (mm) at the seabed Conclusion:
10° s = '
Both fiber optic and ocean-bottom-pressure
sensors could likely provide useful monitoring

of GoM storage sites.

‘z%

E\\\ \
MR\

Reservoir bulk mobulus (GPa)

Permeability scaling

L= T - Figure: Sensitivity to property uncertainty
—d National Laboratory



History matching and inversion

Initial: ko, kto, Eo
etc...
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Vertical movement (mm)
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Background and Motivation (In Salah experience)

SSSSSSS : Absolute pressure (MPa)

(&)

SSSSSSS : Displacement field, Z component (mm)

A 101

Geertsma type solution

0
¥-1.78x107"

reservoir pressure change surface heave




Generalized Geertsma solution from SENSE

Gl,Vl,hl
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Any number and thickness of layers can be
simulated.

We can calculate deformation and stress at any
layer for «static» pressure or temperature
distribution applied at any layer.

Any boundary condition is available e.g. rigid
basement (e.g. Tempone et al., 2010).

Matlab and Python scripts are implemented.

Anisotropy medium model can also be considered
i.e. G,/G,#1. (Park et al. 2021)



For realistic pressure distribution
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31

Highlight: ML-based inversion (pressure-deformation
pattern training)

Surface displacement
Proof Pressure prediction from prediction

-
w
Surface dispalcement

With this framework, we will look into to optimize number of data
points or survey layout so that we can minimize the cost, which can be
critical for the offshore applications!




Summary

Gl

Automatic InSAR data processing: a routine for automatic change detection-BGS has
developed and applies to Hatfield Moors gas storage site = reduces errors & provides
timely and inexpensive access to InSAR.

Fiber optics- monitor static ground movement: Field experiments performed
by RITE in Kyoto, Japan. NGl is doing tests in Oslo, will test later in offshore
Germany (September 2021) - continuous seafloor monitoring.

Fundamental mathematical solution for calculating ground movement
(subsidence or uplift)-considering inhomogeneous, arbitrary number of layers (NGI
& Quad Geometrics)

Advanced numerical simulation & inversion codes: for
ground deformation (IFPEN, CSIRO, KIGAM, LLNL, UT
Austin, IGME, CIUDEN, NGlI)

Hussain et al. 2021

o 2000 4000 6000 8000 10C



Summary:

ground motion monitoring workflow

First-order
. estimation ‘.Df
storage sites grouﬂd uplift

" L

Measure ground
deformation
(INSAR, pressure
sensor, fiber
optics, tiltmeter)

Model ground
motion for
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é(c:cseleraﬁng Monitoring CO, Storage Sites

Technologies SENSE Webinar #2 - 25 January 2022

Geological Carbon Dioxide Storage
Technology R h A lation

Event Information:
When: 25 January 2022 at 11:00-12:00 Central European Time (CET)
Where: Online via Teams
Registration via link:
Welcome to join us and hear about the latest advances on CO, storage site monitoring & SENSE project https://sense-act.eu/



https://sense-act.eu/
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