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« Surface uplift -> Estimation of pressure distribution ?
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Presenter
Presentation Notes
As an introduction, the concept is described in this sketch.
when you inject a fluid into a reservoir – for instance, CO2 – you will have pressure building up in the reservoir.
It will result in the expansion of the rock formation and this will create an uplift at the surface.
This uplift can then be measured, from InSAR for example, as represented by the little satellite here.
 
The question is:
Can we, by monitoring the surface uplift, estimate the pressure distribution in the reservoir?
and can machine learning help in this process?
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« Context on the In Salah injection site

« Measured INSAR data

e Synthetic dataset -> reference data

« Machine Learning ? Requirements, training set ...
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Presenter
Presentation Notes
Here are the headlines of the presentation.
I start by providing some context on the In Salah injection site together with the measured InSAR data that motivated this study.
 
Then I will talk about the synthetic dataset – why we use synthetic and how it is made.
 
Then we will discuss Machine learning – what are the requirements to work with ML, and how do we create the training set.
 
And finally, some results and conclusions of course
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Presenter
Presentation Notes
The In Salah site is located on the very centre of Algeria, as shown on the map in the top right corner of this slide.
This has been an extraction site for natural gas, and then has been used for CO2 storage, with injection starting in 2004 and has been decommissioned in 2011. The injections were made through 3 injection wells for a total of 3.8 million tonnes of CO2 stored.
The surface deformation has been measured after the injection.
You can find more on the history of the injection in Bohloli et al. 2018.
 
The data displayed on the left are the measured uplift from the InSAR data, with the 3 injection wells represented in black.
 
The problem with this measured uplift is that we do not have the corresponding pressure distribution in the reservoir. So we cannot use it as such.



“The synthetic dataset
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Layering and material properties for In Salah

Reservoir inspired synthetic model (after Bjgrnara et al.,
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1 900 3 0.25 Shallow aquifer (Cretaceous)
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Presentation Notes
Hopefully, in a previous study from 2018, Bjørnarå et al. used a finite element code (made with comsol multiphysics) to model the full injection history – modelling the pressure distribution the evolution of the rock mechanical parameters and the surface uplift. 
The final step of the modelling provides us with a pressure distribution in the reservoir and the corresponding surface displacement.
 
This study considered a tabular earth model, with each layer represented by its thickness, young's modulus and Poisson's ratio. Those parameters are presented here in the chart borrowed from the paper from Bjørnarå et al.
 
On the bottom of this slide, I present a pressure distribution and its corresponding surface displacement. Those data are simplified version of the results from Bjørnarå that Park et al. used in their paper from 2021 to demonstrate the Generalized Geertsma's solution that will be used later in this study.

This will be our reference model, our "proof" for testing our approach.
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Machine Learning requirements

* Validation set — previous slide
e Training set
ML network/architecture
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Presentation Notes
Now is the time to talk about Machine Learning.
What are the requirements to work with that
First, we need a validation set, that we do have, we just discussed it. It will be used to validate our approach.
Then, we need a training set, which is a series of pressure distribution and corresponding surface displacement that are used to train our machine learning model.
And of course, we need a machine learning architecture.


Machine Learning network
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Presentation Notes
The figure on this slide is a summary of everything we need to know for the machine learning network.
On the left, the surface displacement – the input.
on the right, the pressure distribution – the output.
And in the middle, the machine learning network.
The goal here, is to "translate" the input into the output. In machine learning, an encoder-decoder architecture usually performs very well on those tasks.
Also, we work with images – 2D dataset. This is usually very well handled by convolutional layers.
 
On the sketch, green arrows represent the convolutional layers. Each layer decreases the size of the input data, but enrich it by creating new versions of it. Each version emphasizes a feature from the data, it extracts a characteristic of the image.
 
Then in the middle, we have the encoded data, that will be pass to the decoder. The decoder is represented by the blue arrows, each arrow is a transpose convolutional layer – it does the opposite operation of the convolutional – it increases the size of the data but reduces the number of version.
The decoder can be understood as an interpreter of the encoded data.
 
For the persons familiar with machine learning, I added some technical informations. activation functions are ReLU for each layer of the Machine learning network, except for the last one which is linear.
The loss function is mean square error.
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Tralining set

* Pressure distribution
e Randomness

« Corresponding surface displacement (forward modelling)
» Generalized Geertsma solution — Park et al., 2021

 Considered a tabular model — needs the thickness, Young’s modulus and Poisson’s
ratio of each layer
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Presentation Notes
We now miss the last piece of the puzzle, an important one, the training set.
The training set needs to be done from scratch.
It is a 2 steps process.
First, we need to create pressure distribution. This requires a lot of randomness – because we want the ML to learn the relationship between the input and the output, and not return a bias version of the training set.
 
The second step is the calculation of the corresponding surface displacement by forward modelling. This use the Generalized Geertsma solution as presented by Park et al., 2021, and will not be described here. The generalized Geertsma solution allows a quick forward modelling of the surface uplift, for a given pressure distribution. It considered a tabular model, and needs the thickness of each layer, it's Young's modulus and its Poisson ratio.
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Tralining set — pressure maps

e Criterion - randomness and “realistic”
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Presentation Notes
To create those pressure maps, we go back to the validation dataset to look for helpful characteristics.
We observe 3 patches of pressure. Each one has a circular shape with some elongation.
On the figure on the bottom, I extracted a profile of pressure – in blue – corresponding to the white line from the grid.
On top of it, I fitted a Gaussian curve in orange. The fit is not perfect, but definitely quite good.
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Tralining set — pressure maps
« 1 Patch defined by :

» pressure patch width along 2 directions
(ol and o2)

e center
e rotation angle

 Multiple patches (2 to 5) creates a
pressure distribution
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Presentation Notes
Gaussian curves can be used in 2D to define the pressure distribution. This is very practical, because one patch of pressure can be defined with 4 parameters. The width of the curves in 2 direction – sigma 1 and sigma 2, the centre of the curve in our grid, where is the patch of pressure located. And a rotation angle to avoid extension of the patch only along the X or the Y axis.
All those parameters are chosen randomly. 
We also choose randomly the number of patches we want to have in one given pressure distribution from 2 to 5.
The 2 figures on the bottom shows 2 examples. As wished, a lot of randomness is observed !
We now compute the corresponding surface displacement, and our training set is ready.
We just need to train our network and see how it behaves.


@Training the model and results
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trainset size:2000
Difference [MPa]

rmse : 2.39 rmse : 2.37 rmse : 2.07 rmse : 2.28
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Here are the results, presented as a grid.
Because 2 parameters can affect the results – the epoch number, on the X axis, which is related to how long will be trained the network. It varies here from 100 to 400. And the size of the training set on the Y axis, ranging from 500 to 2000 on this figure.
I display here the residual together with the root mean square error for each inversion.
Surprisingly, a low number of epoch and a small training set are enough to properly invert the surface uplift, which indicates that our ML network is quickly learning the mapping between the pressure distribution and the surface uplift.
 
In the results, note the consistent pattern, similar as wave propagating radially – like the wave coming from a rock thrown into the water.
If we go back two slides backward, and look at the pressure in profile, note how the gaussian fit is first above the blue line and then below. This is what is observed here. 
The training set is made with Gaussian curves, and the ML network has learnt the Gaussian shape. He will then return a result keeping the characteristic from the training set.
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Here I present the result for an epoch number of 300 and a training size of 2000.
On the left, our validation set, with the pressure distribution on top and the surface displacement at the bottom.
In the middle, the predicted pressure distribution on top, and its residual at the bottom.
and on the right, I calculated the surface displacement corresponding to the predicted pressure distribution with the Generalized Geertsma's solution. And on the bottom, you can see its residuals.
The residual lies in a range of -0.15 to 0.15 mm. 
This means that if you want to detect the difference in the pressure distribution between the predicted one and the one from the validation dataset, this is the accuracy you need to have on the measurement of the surface displacement.


Conclusions

Pressure distribution throughout a reservoir can be obtained
based on ground displacement at surface using Machine
Learning, with some conditions:

- Simplified surface uplift measurements
- Tabular geological model

- Good geological model is required (Poisson’s ratio, Young’s
modulus)

« How to do better ?
 What accuracy do we want to obtain ?
* Improving the generation of random pressure distribution

« Application ?
* Time lapse monitoring
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It is time to go into some conclusions.
We showed that the pressure distribution within a reservoir can be obtained based on the ground displacement at the surface using machine learning, under certain conditions:
We worked with a simplified surface uplift measurements.
The geological model is considered tabular – this is a requirement for the forward modelling.
A good knowledge of the geology – the mechanical parameters for each layer are required.	
 
This also raise some questions :
How to do better ? The answer would depend on the accuracy we want to obtain – if we want to work with the full detail provided by the InSAR data on the uplift measurements, then a more advanced methodology should be used to generate the random pressure distribution. 
An example is the pressure patch with 2 lobes observe at well KB-502, which is definitely not a Gaussian shape.�We used a simplistic approach based on Gaussian curve to define our pressure distribution because it is easy, fast and enough to demonstrate the possibility offered by ML in this context. But this is not a detailed pressure distribution. Yet before going to a very advanced and complex modelling of the pressure distribution, it is worth wondering what the detectability level is on on the surface displacement measurement.
 
 
What could be the application? What could be the benefit of the machine learning?
The one that comes quickly in my mind is time lapse monitoring.
Once your ML model is properly trained, it is quickly applied. 
In the context of an active co2 storage site, each new surface uplift measurement can be quickly processed and provide an almost instantaneous pressure distribution estimation.
Yet it will be one ML network for one given site ! Because the training is so much dependant on the local geology.
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